
CALIBRATION OF NEURAL NETWORKS USING GENETIC ALGORITHMS,
WITH APPLICATION TO OPTIMAL PATH PLANNING

Terence R. Smith
Department of Computer Science

University of California a t Santa Barbara
Santa Barbara. CA 93 106

Daniel Greenwood

Ne trologic
4241 Jutland

San Dlego, CA 92 1 17

ABSTRACT

Genetic algorithms (CA's) are used to search the
synaptic weight space of artificial neural systems (ANS)
for weight vectors that optimize some network
performance function. GA's d o not suffer from some of
the architectural constraints involved with other
techniques and it is straightforward to incorporate
terms into the performance function concerning the
metastructure of the ANS. Hence GA's offer a
remarkably general approach to calibrating ANS. GA's
are applied to the problem of calibrating an ANS that
finds optimal paths over a given surface. This problem
involves training an ANS on a relatively small set of
paths and then examining whether the calibrated ANS is
able to find good paths between arbitrary start and end
points on the surface.

1. INTRODUCTION AND PROBLEM STATEMENT

Massively parallel computing devices composed of
many elementary processing elements (PE's). connected
in a simple and local manner, offer the posslbillty of
computing complex lnput-output relationships rela-
tively quickly. One approach to achieving massive
parallelism involves the use of many identical and sim-
ple processing elements (PES) and relatively local com-
munication links between PES. The artificial neural sys-
tem (ANS) represents one class of such systems that are
currently the object of much investigation. Each PE of
an ANS produces as its output a single, bounded, real-
valued number. An ANS Is a collection of PES, each of
which takes as input the weighted outputs of other PES.
The ANS architectures considered in this paper consist
of networks of synchronous, binary threshold units
(BTU's, see Egecioglu, Smith and Moody, 1987).
The behaviour of the ANS (Le.. the mapping it is able to
compute) is largely determined by the set of weights by
which the output of a given PE is multiplied before
being taken as input to another PE. A major problem in
ANS design Involves the determination of an appropri-
a te set of connection weights between the PE's for com-
puting a given mapping.

Gilbert A. Pitney
Department of Computer Science

University of California a t Santa Barbara
Santa Barbara. CA 93016

In this paper, our primary focus of attention concerns
an essentially unexplored technique for programming
ANS's, namely genetic algorithms (GA's). A secondary
focus of attention concerns the construction of an ANS
that is able to compute "good" paths over some surface,
using GA's and a set of input-output exemplars to pro-
gram the system. In particular, we are interested in the
ability of this programming technique to construct an
ANS that significantly generalizes over the set of input-
output pairs.

1.1. Research Reported In this Paper

The research reported In this paper is of an exploratory
and empirical nature, since the behaviour of both ANS's
and GA's are currently difficult to analyse In a formal
manner. Our basic approach to the problem Involves:

construction of a surface over which "good" paths
are to be computed and computation of globally
optimal paths between all given pairs of points on
the surface (using the Dijkstra algorithm) to pro-
duce a training set of input-output patterns (start-
end points, optimal paths)
establishment of a prior1 constraints on the archi-
tecture of the ANS
choice of which variant of GA to employ in call-
brating the ANS
a set of training runs in which a subset of input-
output patterns are used to program the connec-
tion weights
tests of the ANS on the remaining input-output
patterns to determine how well the GA performs In
generalizing over its training set.

The main purpose of the experiments reported here
was to provide intuition into the application of GA's for
Calibrating ANS's, particularly In relation to the path
planning problem. More systematic investigations of
the problem are now In progress.

2. NEURAL NETWORK PROGRAMMING METHODS

519

Two main problems in ANS design are 1) findlng a suit-
able network architecture, in terms of connection topol-
ogy and type of PE's, and 2) determining the weights of
the ANS. To date, no automatic procedure for designing
a network architecture for a given inputloutput
behaviour exists, although as discussed later, GA's may
be applied to solve this problem (we apply intuition as
a guide to designing the architecture). The main pur-
pose of this paper is to propose a relatively new soiu-
tion to the second problem.
We define the programming of an ANS as adJusting the
weights such that the network can compute a desired
input to output mapping. There are numerous tech-
niques for programmlng an ANS, many of which are
best suited for partlcular problem domains, or limited
to specific network architectures. These techniques
may be currently classified into two groups, the first of
whlch is based on finding connection weights in terms
of predetermined functions of the problem parameters
and the second of whlch is based on some form of
search over the space of weights.
The first class includes assoclative memory techniques
(Hopfield. 1982) and techniques based on finding qua-
dratic forms that express a problem in terms of a set of
constraints (Hopfield and Tank, 1985).
Concerning the second class, one may classify the tech-
niques according to the degree of "iocainess" of the
search procedure. Most learnlng procedures perform a
search over the weight space to minimize some perfor-
mance criterion of the network. The search techniques
include gradient descent, gradient descent with anneal-
ing, and guided random search, Examples of such tech-
nlques include, respectively, back propagation
(Rumelhardt and McClelland. 1986); the master/slave
formalism (see Lapedes and Farber, 1986); and guided
accelerated random search (GARS, Mucciardi, 1972).
In this paper, we propose the genetic algorithm as a
neural network programming procedure.
2.1. Genetic Algorithms

The GA can be viewed as a relatively global search pro-
cedure based upon population genetics (Holland, 1975).
We apply the CA as a function optimizer to the weight
space of an ANS to maximize some performance func-
tion of the network. The mqjor strengths of the GA as a
function optimizer are its ability to search efficiently
and effectively high dimenslonai, multimodal, noisy, and
discontinuous surfaces. Since the GA is being used
purely to search the weight space, there are no restric-
tions on network architecture. There are also no res-
trictions on the terms of the performance function.
The basic GA maintains a population of individuals. In
the case of the function optimization problem, each
individual represents a point in the parameter space of
the performance function, and is represented by a
binary string encoding of the parameter vector. Each
individual is evaluated, and a new generation is pro-
duced by selecting individuals on the basis of their per-
formances for reproduction. Because higher perform-
ing individuals are -selected more often for reproduc-
tion, and due to the recombination effects of the cross-
over operator, there is a pressure towards higher per-
forming individuals being accepted into the population.

The basic algorithm is:
1. Randomly generate a population, Po. of N

members. Set t-0.
2. For all I-l..N, compute and save the perfor-

mance measure P(P$

3. If converged, then STOP. Best Individual of
last population is solution.

4. Compute selection probabilities
J - N

P: = P(P:)/ c P (P f)
I-1

5. Generate next generation, P'+', by chooslng
Individuals via selection probabilities for
reproduction using genetic operators. Set
t-t+l. Goto 2.

The genetic operators used in this paper are crossover
and mutation. Crossover recdmblnes two parent vec-
tors to produce an offsprlng vector by concatenating
the segment to the left of a random crossover point in
the first parent with the segment to the right of the
same crossover point in the second parent. The muta-
tion operator, with a low probability, alters bits in the
offspring. The combined effect of crossover, mutation
and selection allows genetic algorithms to search very
high dimensional spaces efficiently.
One of the most challenging problems In ANS learning
procedure design is the assignment of credit to pro-
cesslng elements which are responsible for a system's
high performance, especially when those elements are
only active early in a long chain of actions which even-
tually leads to reward from the environment. The GA
solves the credit assignment problem by selection.
Indivlduals which contain good weight vectors are
rewarded by a higher probability of recombination and
reproduction. Thus the weights are held accountable for
network performance.

3. THE APPLICABILITY OF THE ANS AND ITS AQSO-
CIATED PROGRAMMING METHODS TO THE PATH
PLANNING PROBLEM

A secondary goal of this investigation is to program an
ANS in such a manner that it contalns an efficient, Inter-
nal representation of a "cost" surface characterized in
terms of some set of efficient paths over the surface.
This representation should permit the network to com-
pute a "good" path between two arbitrary points on the
surface, given only those two points. Since only a sub-
set of the precomputed optimal paths over the surface
are presented to the network during the learning phase,
the network must be able to generallze.
In most of the work to date on the programming of
ANS's to compute specific functions, researchers have
employed the stable states of the ANS as a basis for
representation. For any ANS. there is a fixed number of
such states. Hence the ability of an ANS to compute a
given function is ultimately limited by this capacity
constraint. However, different approaches to represent-
ing a given computation may result in more or less
efficient ANS. Hence part of our research has concen-
trated on different approaches to network representa-
tions and their relative efllciencies.

520

4. A PRELIMINARY INVESTIGATION OF GA’S FOR

NING PROBLEM
PROGRAMMING ANS’S TO SOLVE THE PATH PLAN-

CA’s may be used to modify the synaptic weights of the
ANS In order to maxlmlze the net’s performance in
finding optimal paths. The resultlng network Ideally
accepts an input pattern representing start and end
positlons on a given surface, and produces an output
pattern representing a least cost path from the given
start and end points.

4.1. A Priori Hypotheses Concerning the Topology
of the Connection Weights

As noted above, the topology of the connection weights
may be an important factor in determining the
efficlency of a network with a given number of PE’s.
Hence we explored four alternative topologies, while
keeping the number of “hidden” PE’s constant a t 20.
A quad tree structure was suggested by prior experi-
ence with computational architectures for solvlng path
planning problems (Smith and Parker, 1987). Thls archi-
tecture embodies the hypothesis that the pertinent
features of the landscape required for the ANS to
predict optlmal paths can be best represented in a
hierarchical fashlon. with the more abstract, higher
order features of the surface encoded at the top of the
hierarchy. It presumes that computation proceeds from
the top downward, with higher levels guiding (con-
straining) the computation at lower levels of the tree.
We examlned three such architectures:
a) FFQ Is a feed-forward quad tree structure with 4

layers (see Flgure 1)
b) RQ (see Flgure 2) is a modification of FFQ with

recurrent connections between layers
c) RQNNN is the same as RQ, except for the addition

of next nearest neighbor connections between
units on a layer (see Flgure 5)
FIH (see Figure 3) involves 20 fully-connected hid-
den units.

d)

Quad tree topology I s shown In Flgure 4.

4.2. The Landscape

The surface investigated is derived from a topological
map of a 40 square kilometer area of the Sierra Madre
Mountains In Californla mapped onto an 8x8 square
grid of pixels. Each pixel is represented as a node in a
four-connected transition cost graph, in which each link
represents a bidirectional, symmetric cost. The derived
cost graph is then used as input to Dijkstra’s algorithm
to compute optimal paths, and to the CA’s obJective
functlon in order to gauge the performance of each
ANS.

4.3. Objective Functions

The CA uses an obJective functlon to evaluate the per-
formance of each member of the populatlon. In thls
case, the lndivldual Is an ANS. and the task is to predict
the optimal path over a surface between two points.

After presentation of the input pattern to the ANS. and
after the network relaxes, the obJectlve function com-
putes an error measure between the optimal path
predlcted by the network and the true optimal path.
The network predicts a path by turning on those neu-
rons in the output layer which correspond to nodes In
the transition graph, which in turn correspond to points
on the surface.
It Is helpful to choose a performance measure whlch
facilitates the genetic search. The objective functlon is
a mapping from the weight space of the ANS to a single
performance value. As a general rule, the objectlve
function should posses some degree of ’smoothness’ in
the region about the solutlon point In the weight space.
Thls means that any change In the weights in the direc-
tion of the optimum should yield a higher performance
value. For a discusslon of how various types of objec-
tive functlon surfaces affect search procedures, see Ack-
ley (1987).
Two basic performance functions are used in these
slmulatlons. The first function, P1, incorporates three
terms: 1) an incorrect link cost, 2) an incorrect pixel
cost, and 3) convergence time, as defined below:

x = C[obs(llOp‘ - l;’r)(l,””tcost(/,”’‘) + COS^(^;"^))]
J

+ 20C[abs(ioP‘ - si)] + T
1

P, = 100/(1+x) (4)

Where, all references to llnks and neurons refer to the
output layer, and

lop‘ = { 1 if link is between adjacent neurons on
the optimal path; 0 otherwise).

Inat = (1 if llnk Is between adlacent neurons
turned on by the network; 0 otherwise].

cost(l) - cost of traversing llnk 1.
- - I 1 If the Ith pixel lles on the optimal path;

0 otherwlse).
s, = state of neuron 1.
T - relaxation time of the network.
J - index over all llnks in output layer.

The Incorrect llnk cost term penallzes the network for
predicting paths which either 1) contain a linkage
between two adjacent neurons whlch does not exist In
the optimal path, or 2) lack a llnkage which does occur
in the optimal path. The amount of penalization Is Just
the sum of the costs of traversing such linkages. The
incorrect pixel count term penallzes the network for
predicted paths which elther 1) contain points which d o
not appear in the optimal path, or 2) lack points which
d o appear In the optimal path. The amount of penallza-
tion is proportlonal to the number of such Incorrect
pixels. The third term is the number of time constants
the net takes to relax. The network Is said to have
relaxed when the activity pattern of the output layer
has remalned constant for seven time constants.
The second performance function, P2, is designed to
overcome the apparent deficiencies in P1, and also to
stress to the network the importance of well-formed
paths. Note that the second term in P1 enforces the
constraint that pixels predicted by the network lie on
the optlmal path. However, It will also penalize a

52 1

predicted path of near optimal cost if that path does
not geographically coincide with the optimal path. This,
to some degree, violates the smoothness criterion for
good objectlve functions. Thus, the second term in P1
is replaced by two terms whlch Impose the constralnt
that the output pixels be on a well formed path, not
necessarily the optimal. The first term Is modified
to some degree. violates the smoothness criterion for
good objective functions. Thus, the second term In P1
is replaced by two terms which impose the constraint
that the output pixels be on a well formed path, not
necessarily the optimal. The first term is modified
slightly from P1, but still enforces the optimal path con-
strain t:

X = 2o[cIsk(l - n ~ o u n t (k)) ~] + c [S h (2 - n c o ~ n t (h)) ~]]

+ obs(C-Ccost(l;.')) + 7'
k h

J

P, = 100/(1+x) (5)
Where

ncount(1) - number of neighborlng neurons
of i whlch are on.

C - the cost of traversing the optimal path.
k - index over both path endpoints.
h - index over all other points.

Note that in P, the terms enforclng well-formed paths
are welghted most heavily.

4.4. Representation of the Weight Vector

Generally, the ordering of gene values in the CA control
strlng can strongly affect convergence, especially in the
absence of an inversion operator. The control string is a
binary strlng encodlng of the welght vector. Each
welght is encoded In 8 bits in two's complement binary,
and ranges in value from -128 to 127. The weights are
then concatenated to make up the control string.
Two ordering schemes are used. in the first, called LR,
the weights ordered from left to right correspond to a
top down ordering in the network. For example, weights
on connectlons to the 2x2 hldden layer In the FFQ net-
work are encoded at the leftmost end of the control
string. The second scheme, called Q distributes the
welghts over the control strlng In quad tree order.
Thus, weights on connections to the top of the network
hierarchy are not grouped together, but are distributed
throughout the corresponding sectors over the length
of the binary string.
In the GA used in this study, crossover is the main
operator for generating new weight vectors for evalua-
tion. Since It Is assumed that the abstract features of
the landscape allowing the ANS to generalize will be
encoded In the hidden unit weights, It Is expected that
encodlng scheme Q will facllitate search more than
scheme LR by allowlng crossover to generate offsprlng
with a greater variety of hidden weights. Scheme Q can
only be applied to the quad tree networks.

4.5. Reproductive Plan 4 (R4)

The variant of GA used In these slmulatlons Is the ell-

tist expected value model (Reproductive Plan - R4) dis-
cussed in De Jong (1975). Two genetic operators are
used in this model: mutation and crossover. A n elitist
model transfers the best performing lndlvidual of the
current population intact Into the next generatlon. Thls
pollcy slightly favours local search, and is found to
speed convergence. The expected value model drasti-
cally reduces stochastic errors by replacing the use of
the random varlable in the selectlon process by a count-
ing scheme based upon the expected value of the selec-
tion probabllity. Thls prevents any statistlcai fluctua-
tion which might, for example, cause a high-performing
member of the population to be overlooked during
reproduction.

4.6. Training Methods

Two different tralning modes were used during the pro-
gramming of the network. In the first, T1. the same
tralnlng set of data Is shown to the networks over all
generations. In T2. a t each generatlon the networks are
evaluated on unlque and disjoint subsets of the training
set. Thus, In training mode T2, the total number of data
points in the tralning set is the product of the constant
size of the tralning subset per generation times the
number of generations.

5. SIMULATIONS AND RESULTS

Table I summarizes the GA parameters used in the
simulations. The parameters of the nlne separate
experiments are summarized in table 11. The experlmen-
tal procedure used to train and evaluate each network
is discussed below.

5.1. Experimental Procedure

First, the training and test data sets were prepared.
Dijkstra's algorithm was applied to the cost graph
representing the landscape to find the optimal path
between all pairs of points on the surface. Each data
point is a tuple consistlng of an Input pattern encoding
the start and end points, and an output pattern encod-
ing the optimal path from the start to the end point.
Subsets of the data were allocated to a training set and
a test set.
The experiment proceeded in two phases. During the
learning phase, the training set data was used by the
CA's performance function to search the weight space
of a partlcular ANS. After learning, the capability of the
network to generalize was measured on the test data
set.

5.1.1. Learning Phase

Before any particular run. the network architecture was
speclfied. An Initial populatlon of welght vectors was
randomly generated. Each member was evaluated by
simulating the equatlons governing the correspondlng
ANS and measuring Its performance in a series of trials
In whlch the net attempts to complete the correct out-
put pattern for a given correspondlng Input pattern.
After the net relaxed, or when the maximum time allot-

522

ted for the network to relax was exceeded (50 cycles in
our simulations), the oblective function was applied to
the output layer. The average over all trials was taken
as the performance of that particular net. This perfor-
mance value was then used by the GA to assign selec-
tion probabilitles to individuals for reproduction. The
learning phase ends when the genetic search converges.

5.1.2. Test Phase

In the test phase, the best performing member of the
last generation was evaluated on the test data set. TO
allow comparisons, the performance function used in
the test phase, P3, was the same for all runs:

X = c[S,(l - n c o ~ n t (k)) ~] + c[sh(2 - ncount(h))2]
k h

+ abs(C-Ccost(/;”))
J

P, = 100 - x/2 (6)
P3 is a variant of P2. with equal emphasis on cost and
path terms, without the convergence time term, and
linear in x.

5.2. Description of Results.

The results of the nine runs are displayed in tables 111,
IV, and V.
Table V shows the number of generations each run took
to converge, as well as the total number of paths in the
training set. When training method T1 was used, the
performance vs. generations curve was monotonically
non-decreasing, and the GA was considered to converge
when no improvement had been made in the perfor-
mance value of the best network over 12 generations.
With training method T2, since the training data was
different for each generation, the performance vs. gen-
erations curve was not monotonic, and the GA was con-
sidered converged when no improvement could be seen
in the average performance of the best network over
about 20 generations. Run 6 took a long time to con-
verge, and was stopped at 288 generations. It should
be noted that run 6 converged with respect to perfor-
mance on long length paths. Before it was stopped, It
was continuing to increase in the performance on short
to medium length paths.
Table 111 shows the value of the performance (P3) of the
best network of the last generation of each run on the
training data. Entries marked by a dash in the table s i g
nify that no paths of length Indicated by the column
heading were contained in the training set. Perfor-
mance values are sorted by path length, and are aver-
aged over the number of paths of that length in the
training set, which varied from run to run. A perfor-
mance of 100 is a perfect score, indicating that the net-
work correctly predicted the optimal path.
The main results of this work are given in table IV. The
performance (P3) Is calculated a s In table 111, but using
the data In the test set, and averaged over a constant
number of trials per path length, as Indicated in the last
row of the table.

5.3. Discussion of Results

Although none of the ANS’s did a perfect Job of con-
sistently predicting optimal paths during the test phase,
we gained some Insight Into the problems of training a
network to generalize. of weight vector representation
In the GA and of network architectures for this prob-
lem.

5.3.1. Performance on the Training Data

Referring to table 111. performances using the training
data In runs 1, 3, 4, and 5 show the ability of the best
network to correctly predict the single training path of
length 15 pixels. Only one pixel was missing from the
middle of the predicted path in run 3, giving that net-
work a suboptimal score of 98. Run 2 shows the per-
formance on 5 training paths of lengths ranging from
11 to 15 points. In this run. one path was predicted
correctly, one had a few extra pixels In the output layer
turned on, and 3 paths were halfway complete.
The networks of runs 1 through 3 did not use their hid-
den units in predicting the optimal path. Only when
the architecture was changed from FFQ to RQ and FIH in
runs 4 and 5, respectively. that is. when bottom up con-
nections were added, did any hidden units come into

Runs 6 through 9 were trained using one or five
different paths per generation. This training method
always caused the best network to use its hlddens in
the computation, and led to better generalization capa-
bilities on the test data. Because of the training method
used, the total training set sizes in runs 6 through 9
were much larger. as shown in table V. There are no
significant differences between the performances of the
nets in runs 6 to 9 on the training and test data. These
networks made greater use of their hidden units, and
learned early in the training phase to generalize. This
was expected, since the T2 training method does not
allow any one path to be seen by a network for more
than one generation, thus discouraging the ’memoriza-
tion’ of a specific pattern.

5.3.2. Performance on the Test Data

play.

The measures of performance of the best networks on
the test data give some indication of their ability to
generalize (see table IV).

5.3.2.1. Best Networks

The network which had the most consistently high aver-
age performance over ail path lengths was that of run 8
(RQ,P2,T2.5.4). Given any two points as Input. the net-
work often made a reasonable approximation to a path
between them, keeping disconnected pixels to a
minimum. Short to medium length paths would some-
times complete correctly. but the network had trouble
with longer paths.
The next best network, in terms of generalization capa-
bility, was that of run 6 (FiH,Pl.TZ,l,LR), which per-
formed very well on short to medium length paths, but
did much more poorly on longer paths.

523

Though the network of run 5 (FiH.Pl,Tl.l,LR) shows
high performance values for medium to long length
paths, its ability to generalize was nil. No matter what
the input pattern to this network, the output pattern
would usually be the same path used in the training
phase. P3 would score the pattern highest for long
optimal path lengths because the path was connected,
and usually had a traversal cost similar to the optimal
path of the given inputs. The only cost penalty was in
the lack of connections to the true path endpoints,
which Is small.

5.3.2.2. Comparisons Between R u n s

Despite the paucity of runs, a comparison of simulation
results in table IV suggests some interesting, though
inconclusive, results.
Comparing runs 1 through 5 with runs 6 through 9 indi-
cates that the training method T2. Le., showing each
generation a different training set. is sufficient to pro-
duce generalization capability in the networks. It is not
known whether TI. with a much larger training set slze.
would also induce generalization.
A comparison of the results of runs 1 and 3 show that
the quad tree ordering of welghts in the genetic control
string gave a slight improvement in performance over a
simple top down encoding.
Comparing runs 1 and 4 suggests that bottom up con-
nections increased performance.
Run 7 was somewhat of an anomaly, in that it should
not have differed much from run 6. We believe that, for
the number of alleles in the chromosome, the popula-
tion size was too small, and the GA had insufficient
gene variability to sustain a global search, and thus
found a local minimum.
Comparing runs 8 and 9 indicate that adding next
nearest neighbor connections within layers actually
decreased generalization capabillty. In fact, a con-
sideration of the qualitative observations on the data of
runs 1, 4 and 5, which were all trained with T1 and one
training pattern, shows that the addition of feedback
connections widens the basin of attraction about the
single learned memory vector. Thus, the networks with
more feedback connections, and trained under T1, more
often produced the same training pattern as output
independent of the input pattern.

6. CONCLUSIONS

We have proposed a general technique for programming
ANS's using GA's. Unlike most techniques, the GA
imposes no constraints on network architecture or per-
formance function. As a result, novel terms, relating not
only to the network's performance In the particular task
environment, but also to meta variables of the network,
may be Incorporated. For example, our objective func-
tions P1 and P2 included the network convergence time
as a term to be minimized. in run 5, on the training set,
the GA found a weight vector capable of perfectly
predicting the optimal path after 73 generations, with a
network convergence time of 14 time constants. After
20 more generations, the GA had decreased the conver-
gence t h e to 12, then finally to 10 t h e constants.

Such a criterion as speed of computation would be
difficult t o incorporate into most other network pro-
gramming procedures.
Concerning the solution to the optimal path planning
problem, it is apparent to us that 20 hidden BTU's is
Insufficlent to solve the problem as posed. A major Iimi-
tation is the number of stable states that are feasible
using a n ANS with only 20 hidden units. The path
planning problem is hard for the network to solve
because of the minimum of input information, and
because it convolves two problems, namely finding
well-formed paths and finding optimal paths. The fact
that the GA could not find a weight vector to solve the
problem was because of architectural constraints. We
doubt that any other Iearnlng procedure could have
solved this problem with the given number and type of
neurons.
Even though the networks were not able to always
predict optimal paths, the simulations showed us the
importance of knowledge guided search through the
experimental parameter space.
This work suggests two directions for future research.
First, for the short term, a more rigorous experimental
approach is needed to explore network architectures
for solving the path planning problem. it appears that
a hierarchical network architecture, with bottom up
feedback, is the most promising structure. The number
of hidden units and the power of the PE's should also
be increased.
The second and more fundamental area of research
involves the first problem of ANS design: finding a suit-
able network architecture for a particular problem.
This includes number and type of PE's. and connec-
tivity. Here especially the GA appears to be a natural
candidate solution, because of its role in the evolution
of the human nervous system.
The solution would involve finding a good encoding of
an ANS architecture in terms of a representation suit-
able for manipulation by the GA. and a developmental
plan to translate that encoded representation (geno-
type) into the corresponding network (phenotype).
Such a plan may be a set of growth rules, of the type
discussed in Lindenmayer (1976) or proposed recently
by Wilson (1987). The performance of each network can
then be evaluated in the given task environment. Furth-
ermore, if the network is able to learn during its evalua-
tlon phase, that is, if the connection strengths are not
solely determined by evolution, Hinton and Nowlan
(1987) argue that the learning capability would provide
an easier 'evolutionary path' toward the optimal net-
work archltecture.

7. REFERENCES

Ackley, D.H., "Stochastlc Iterated Genetic Hill-Climbing."
Doctoral Dissertation, Carnegie-Mellon University, Pltts-
burgh, PA, 1987

De Jong, K., "Analysis of the Behavior of a Class of
Genetic Adaptive Systems." Ph.D. thesis, Dept. Comp.
and Com. Sciences, Univ. of Michigan, 1975.

Egecioglu. 0.. Smith, T. R., and Moody, J., "Computable
Functions and Complexity in Neural Nets," In J. Casti

524

(Ed.), Proceedings of the Abisko Conference on Neural
Computation, Elsevler (in press), 1987.

Hinton, G., and Nowlan. S.,"How Learning Can Guide Evo-
lution," Complex Systems, Vol. 1, No. 3, June 1987. pp.

Holland, J., Adaptation in Natural and Artificial Systems,
Univ. of Michigan, Ann Arbor, 1975.

Hopfield, J., "Neural Networks and Physical Systems
with Emergent Collective Computatlonal Abilities," Proc.
Natl. Acad. Sci. USA, Vol. 79, 1982, pp. 2554-2558.

Hopfield, J. and Tank, D., "'Neural' Computation of Deci-
sions in Optimization Problems," Biological Cybernet-
ics.52,141, 1985.

Lapedes, A.. and Farber. R., "Programming a Massively
Parallel, Computation Universal System: Static Behavior,"
Conf. Proc. of Neural Networks for Computing,
Snowbird, UT, 1986. pp. 283-298.

Lindenmayer, A., and Rozenberg. G. (eds.). Automata.
Languages, Development. Amsterdam: North-Holland,
1976.

Mucciardi. A.N.. "Neuromtme Nets as the Basis for the
Predictive Component of Robot Brains," Cybernetics,
Artificial Intelligence, and Ecology, H.W. Robinson and D.
E Knight(Ed.s), Spartan Books, Bensdem, PA., 1972, pp.

Rurnmelhart, D., and McClelland. J., Parallel Distributed
Processing: Exploration in the Microstructure of Cogni-
tion. MIT Press, 1986. Chapter 8.

Smith, T. R. and Parker, R. E., "An Analysis of the Emcacy
and Emclency of Hlerarchical Procedures for Computing
Trajectories over Complex Surfaces," European Journal
of Operations Research, 30,1987, pp. 327-338.

Wllson. S., "The Genetic Algorithm and Biological
Development," Genetic Algorithms and their Appllca
tions: Proceedings of the Second International Confer-
ence on Genetic Algorithms, July 28-31. 1987, MIT, Cam-
bridge, MA. pp. 247-25 1.

495-502.

159-193.

8. FIGURES

8 x 8 Input

2 x 2 Hidden

A x 4 Hidden

8 x 8 Output

Figure 1 - Feed Forward Quad Architecture

A,,T42vE
Figure 2 - Recurrent Quad Architecture

20 Fully
Interconnected

/ t Hiddens

Figure 3 - Fully Interconnected Hiddens

o......

a.) 2x2 to
4x4 connections

- o o o - - - o

b.) 2x2 to 8x8 connections
Figure 4 - Quad Tree Topology

0 0 . 0 0
nearesl neighbors, t

nearesl neighbors bb
0 0 0 0

Figure 5 - Next Nearest Neighbor Connectivity

9. TABLES

Table I
Genetic Algorithm Parameters

Parameter Value
Model
Populatlons Size
Crossover Rate
Mutation Rate

52 5

Table I1 - Simulation Parameters

5
6
7

1 LR
1 LR 2nd
5 LR

No. of
Trials

.Averaged 83 44 55 32 35 19 17

Table 111 - Performance on Tralning
Data Paths

Optimal Path Length

3

5 1 73

3 I I - I - I - I - I - 1 -
4 1 1 - 1 - 1 - 1 - 1 - 1 -
F

1

Table IV - Performance on Test Data
Paths

I Optimal Path Length I 1 1 2 3 4 5 6 7

]Averaged 1 1 32 I 71 1 79 I 6 1 1 9 8 1

Table V - Convergence Times
and Total Training Set Size

To Conver e Set Size

~1
63

7 1 40 I 200
8 1 100 500
9 1 199 1 995

*Thls run was stopped before
convergence; see text.

ACKNOWLEDGEMENTS

We wish to thank NASA and VERAC, inc. for supporting
this research.

526

